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Estimating Reliability

Estimeting Reliability From a Single

Administration of a Mastery Test

A masieny 1esd is one in which the range of possible scores is partitioned
into R nonoverlapping intervals that define various levels of student mastery.
The familiar pass-fail test with a eriterion of 75 percent correct is an ex—
ample of such a criterion-referenced (CR) test, where R = 2. Siﬁce pastery
tests are often used in conjunction with instructional programs that maximize
the number of students attaining the highest mastery states and minimize the
variability of test scores, the classical correlation between scores on parallel

tests (or equivalently, the ratlo of true to observed variance) may be attenuated

by lack of variability and thus is unsatisfactory as an indicator of CR reliabil-

For this reason, Livingston (1972a,b,c, 1973) proposed the fol-

lowing index of CR reliability for the special case of k = 2 mastery states:.

K27y o*(N + .(I.!-C)Z _ -
) + (1-0)

where X and T are observed and true scoresrespectively, i 18 the mean score and
C is the criterion secore. In words, Equation 1 is the ratio of true variance
plus (l.!-C)2 to observed varlance plus (u-C)Z. Thus, possible lack of secore
variability is compensated for by the addition of the squared distance between
the mean and the criterion score. Kz(X,T).increasea as (l.!--C)2 increases for
fixed az(T) and UZ(X), which for certain distributions is indicative of the
fact that assignment to mastery states is stable because scores do not cluster
about C. However, for a symmetric, bimodal distribution KZ(X,T1 increases

as G moves away from M toward either of the two modes~-even though assignment
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2 Estimating Reliability

to mastery states 1s more stable at i than at the modes. Livingston's index‘
has subsequently elicited criticism for a number 2f different reasons (Hamble-
ton & Novick, 1973; Harris, 1972, 1973; Shavelson, Block & Ravelch, 1972; Raju,
Note 1).

Harris (Note 2) thus proposed another coefficient for the case R = 2 -~
the squared correlation between mastery state, scored 0 and 1, and total score.
In analysis of variance terms, this is a strength of relationship indeg given
by:

ss

2 B
K. = e oo (2)
c " SS; *SS,

ere a are between and within sumg of squares from a one-way analy-
wh SSB nd SSw b nd h £ sq £ 1
sis of test score variance for the R = 2 groups defined by criterion C. How-
ever, as Harris notes, jor.symmetric.distnibutionsnthe-maximumﬂvalue~ofnuguoc--

curs at C = i when the proportions in the two groups equal one-half. In the

case of a symmetric, unimcdal distribution this implies that ug is largept when

2 oage

C = ¥ is at the point of greatest score density and, thus when assignment to
mastery states is relatively unstable.

More recently, Hambleton and Novick (1973) have Euggested that an index
of CR reliability reflect the degree to which students are consistently as-
signed to the same mastery states acrosé parallel test administrations,as mea-
sured by some coefficient of agreement across testings. Accordingly, Swamina-~
than, Hambleton and Algina (1974) proposed that the proportion of gtudents con-~
sistently assigned to mastery states across two testings serve as an estimate,

i.e.,

b
p, = Llpg, | )




_the coefficient increases and decreases_appropriately.as.criterion.C.is.var-

- e ———en - PErTI—— TR LT

3 Estimating Reliability

where pii is the proportion of students consistently assigned to the ith

mastery state across the two administrations. Actually, Swaminathan, Hamble-

_ ton and Algina recommend that a simple function of P, be used=--namely, the

proportion of consistent assigmnents beyond that expected by chance.

Most recently, Marshall and Haertel (Note 3) have suggested a single
test administration coefficient of agreement estimate. Their method is one
of computing the average po across all possible split-halves of a single test
(denoted B because it is computationally analogous to the classical & coef~
ficient) and then stepping up B by a Spearman-Brown type formula to obtain an
estimate for the full-length test. Initial results based on simulated data
geem to indicate that the Marshall-Haertel index behaves in a reasonable man-

ner for different score distributions and criteria ¢ (Marshall, Note 4), i.e.,

iously get at points of light and heavy score concentration. However, the
derivation of the index was basically empirical rather than theoretical, and
thus many of its statistiecal proﬁerties are presently unknown. The purpose of
the present paper 1s to propose an alternative, single-administration coéffi~

cient of agreement estimate that is based on well-known statistical theory.

The Mathematical Model
Let us begin by formally defining the coeffdcient of aé&eemenz for an
individual 4 as the probability that i is assigned to the same mastery state
on parallel tests X and X'. The model for the case of £ = 2 mastery states de-
fined by criterion score C is outlined here; but the model extends easily to
kR > 2 mastery states defined by multiple criteria 01,02,03...Ch“1. Now,
there are two ways that an individual i can be assigned to the same mastery

state on parallel tests X and X' with criterion €: (1) X, > C and X'i >C
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4 Estimating Reliability

indicating consistent mastery/mastery decisions and (2) Xi < C and Xi < C in-
dicating consistent noum;stery/nonmastery decisions. (There are also two ways
that inconsistent decisions can arise: (1) Xi > C and Xi <C, and (2) Xi <C
and Xi_g C.) Thus the coefficient of agreement Féi) for person 1 can be

written:
P("’)nP(x >C, X >L) +P(X, <C, X, <O (@)
c 126 X 28 1 5G4

where the terms on the right side of Equation 4 are the probability of consis-
tent mastery/mastery and nonmastery/nonmastery decisions respectively. Equa-
tion 4 might be of interest to educators who want to determine the reliability
of a mastery test for making decisions about a particular person in an indivi-

dualized instructional program.

. _The coefficient of.agreement for_a_group. of.N.persons. _can.now_be.defined. . . -

ag the mean of the individual coefficients:

N
¢4
R
Po = Eh—
¢ N (5
1§=1[P(x1 2C, X 20) +P(X < ¢ X! < O]

N

Equation 5 is the sum of the probability of a consistent decision for each per-
son 1 weighted by his or her probability of occurrence in the group, and so
again represents the (group) probability of a consistent decision on parallel
tests.

Let us now introduce two assumptions that make possible the estimation
of the individual coefficient of Equation 4, and thus algo the estimation of
the group coefficient in Equation 5. The first assumption is that scores Xi

and Xi are independently distributed for a fixed person i (Lord and Noviek,




5 Estimating Reliability
1968) . Under this assumption Equation 4 can be rewritten:
(1) DrXT DY
Po P(X, 2 0 +P(X] > €) + P(X < C)+P(X] < C) (6)

This assumption impliés that the experience of taking test X does not affect
the outcome on test X' for person i or vice versa; and its validity would de-
pend upon the degree to which content and admini;tration of the two tests are
separate. '

The_aecond asgsumption is that the distributions of Xi and Xi for a fixed
person are identically binomial in form (Lord & Novick, 1968). This implies
that each of the n items on a test is scored 0 and 1 and also that the exper-
ience of taking earlier test items does not affect outcomes on later items.

Under this assumption Equation 6 simplifies to

) 7 )
Per = [PX, 2 0)]° + [P(X, < O]

2 2 N
= [P, > 1% + [1 - P(X, > O]
where
4 X n-X '
P, >e) = T (P - p)tT (8)
1 xj-;c X, P1 Py

The quantity pi in Equation 8 is the true probability of a correct item re-~
sponse for person i, which can be estimated from hie or her obsgrved score Xi on
a single test, e.g., 51 = Xi/n. Thus, as illustratéd in a later section, the prob-
ability of consistent classification for each person can'be estimated by Equa—~
tions 7 and 8 and for an entire group by Equation 5, using the data from a
single test administration.

Furthermore, the marginal group probability of assignment to the mastery
(nommastery) state is the same for both X and X' under the assumption of iden~-

tically distributed Xi and Xi; and the group probability of a consistent de-~
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cigion due to chance with criterion C is:

Pehancesg = P& 2 OPXT 2 0) +P(XX 2 C)-P(X' < C) (9
= P> 012+ 11 - P > 0))2
N
P&, >0
wvhere PX >0) = 1=l : (10)

N
Thus the group probability of 2 consistent decision beyond that expected by
chance 1s given by the kapps coefficient (Cohen, 1960, 1968, 1972; Swaminathan,

et al., 1974):

c Pchque/C an

Pchancelc

where PC is given by Equation 5 and P

chance/¢ 18 &iven by Equations 9 and 10.

At this point, it may be interesting to reflect on 8 more general mathemati-

cal model of which Equstions 6, 7 and 8 constitute & specisl casse. Figure 1

Insert Figure 1 sbout here

represents the outcomes over repested, joint gdministrations of psrsllel teats

X and X' to person 1 with criterion C. The hatched asress of Quadrants I and

III represent consistent decisions. The essentisl problem is one of determin-
ing the proportion of the bivariste distribution thset fslls in these two quad-
rants, given dats from &8 single teat asdministration. The binomial model is s
logicsl f£irat choice because it ig relatively simple snd yet flexible enough

to sccount for the change in differerit students' distributions of scores, as
their true sbilities vasry from nesr the "floor™ of a test through the midrange
snd to the "céiling" (see Lord and Novick, 1968, p. 510). However, more complex

models probably provide s more accurate description of reslity in most testing

g U g




7 Estimating Reliability 5

gituations. For example, Equation 8 might be replaced by a compuund binomial

model (Lord & Novick, 1938, pp. 524-526):

n
X ~X
1’0(i >C) = XE {(x")pii(l-pi)n i+ AiB(Xi)} 12)
i'C i .
Aiand B(Xi) above are defined by:

n (n-1)82p, (1-p,)
Ay = > (13)
2[My (n-My) ~ S} - nS7]
2
- vl 20 n-2 L X —v o N(1=2) (X ~v)
B(X,) VZO( DTGP A P { (1)

In Equation 13 Si is the variance of the n item difficulties; MX and Si are re-

respectively the mean and variance of test scores for the group.

_____.,,Ee_timating_pi U U

The computational process of the previous section is set in motion by
egstimating the probability of a correct item response Py for each person from
the observed data. P(Xi > C) can then be computed by Equation 8 for the simple
binomial model or Equation 12 for the compound binomial model, followed by
Equations 7 and 5 or by Equations 9-11. The present sgection consi&;ra

various ways of estimating Py

Simple Binomial Model
The traditional (maximum likelihood) astimator of P, 1e the proportion of
test items correctly answared by person 1i:

py = X in (15)

where Xi is the number correct ané n ig the total number of items. Since

the standard error of estimate in thie case is Vpiil—gé7n,Equation 15 should
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lead to reasonably accurate results 1if n > 40, particularly if the mastery
level of most students 18 well above (below) Py = .50.

However, Equation 15 does not include certain collateral information,
guch as mean MX and variance Si, that 18 availablé in group testing situations.
When the number of items M 1s small, the inclusion of such information is par-
ticularly important for obtaining better estimates of Py than those given by
Equation 15. For example, if the distribution of observed scores X for
the group approximates some member of the negative hypergeometric family of
unimodal distributions (see Lord & Novick, 1968, p. 519 for illustrations) a

better estimate of Py is given by the regression equation:
X M

~ i X
i Mx(n-Mx)
where o,; = ~—=[l ~ } 18 -the Kuder-Richardson -Formila 21 reli-
X

ability coefficient (which 1s the squared correlation between observed and
true score under the simple binomial model.)

Equation 16 assumes that person i is a member of a unimodal distribution
with mean Mx and variance Si- However, multi{modal situations ate possible if
different grade levels are present or if the test items are designed to dis-
criminate véry sharply between masters and nonmasters. Blind use of Equation
16 in such situations can lead to erroneous Py eatima;es because the means and
variances of the separate populations may be very different from the mean and
variance for the combined data. If the various populations are clearly dis-
tinguishable, a separate regression Equatfon 1ike (16) can be derived for each
group. However, an estimation procedure for PL that employs collateral infor-
wation and yet is free of distributional assumptions has obvious sdvantages.

One such estimate is given by (Lord and Novick, 1968, p. 514):

o L AeeA




A—n

B T S A

9 Estimatirg Relilability

$(X-1)
~ A XL a
P = 1 =% 500 Px-1

an

where ¢(X-1) and $(X) are the relative frequency of X-1 and X in the
combined group and BX-I and ﬁx are the proportion estimates corresponding to
scores of X-1 and X. Unfortunately, complexity is the pricu that one pays for
the generality of Equation 17. Accurate estimation of $(X-1) and ¢$(X) require
a large sample of subjects. Additionally, since (17) represents # equations
in 1 unknowns, the researcher pust speclfy one of the EX-I values to set the
estimation process in motion, e.g., 1f X-1 is a chance score on an m-option
multiple choice test one might set ﬁx-1 = 1/m. See Lord (1959) for examples
of the use of Equation 17. Further pursuit of simple, yet general, procedures

for estimating Py with small # -1g clearly indicated.

Compound Binomial Model

The procedures here are analogous to those‘above. If »n 1s large éhe
classical estimate of Equation 15 can be used.

However, the following regression estimate includes collateral information

about the mean, variance and item difficulties for a unimodal distribution:

o Xy My
p, = azo(",';) + (l-azo) ('_r?) _ (18)

where @y, 18 the Kuder-Richardson Formula 20 reliability coeficient
(which is the squared correlation between observed and true scores urnder the

compound binomial model) .

Examples
In order to illustrate the computation of the individual and group coef=-
ficlents Péi) and Pb, the simple binomial model will be applied first to a small

set of stimulated data and then to real data.

e e i o v - v W el e bbe et o - men —m o b
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10 Estimating Reliability

As shown in Table 1, the true probability of a correct item response Py

Insert Table 1 about here

was specified for each of N = 10 hypothetical subjects. An observed score Xi
on an 1 = 5 item test was generated for each subject uaing Py- For example,
a random unit was drawn indicating Person 1's performance on each of the five
items as follows: 9, 3, 6, 5, 2. Since Person l1l'a probability of a correct
response is p, = +2, Units 0-1 were scored as correct and Units 2-9 as incor-
rect, accordingly Xl = 0 as shown in Table 1.
These single-administration Xi scores are used to estimate Péi) and PC

where C = 4. First the probability of a correct response Si for each student

1s estimered by Equation 16 Next, pi_is substituted into Equation 8 with o

C = 4 and 1 * 5 to obtain P(X > 4) and its complement 1 - P(X > 4) for each

atudent. P(X > 4) and 1- P(X > 4) are squared and summed according to Equa-
()

tion 7 to provide an estimate p of each individual's coefficient ¢f agree-

a(1)

ment; and finally the group coefficient of agreement is the mean of the p
column as indicated by Equation 5, i.e., P4 = 7.5196/10 = .75.
As a check on the reasonableness of the estimate above a second aet of
Xi scores, ahown in the last column of Table 1, were generated in the same
way as the Xi scorea. Since eight of the students are consistently classified
aa master/master or nonmaster/nonmaster on both tests with C = 4 (Students 2
and 8 being the exceptions), the two-administration estimate of the coefficient
of agreement ia P, = 8/10 = .80. A comparison of the ome- and two-
administration estimates across criteria C = 1, 2, 3, 4 for the example of
Table 1 indicatea a median difference of 3 percent between the two indices.
However, the proof of the pudding is in the eating; so let us now consid-

er aome real teat data. In 1974 Form 43 of the Hathematics Baaic Concepts

2

Subteat (Sequential TEsts of Educational

Pt
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Progress~~Series II} yas admin’stered in Grade 5 of the Madison Public Schools.
This 1s a 50-item multiple-choice test of factual recall, mathematical manipu-
lation, and so forth. A group of N = 30 students was selected for analysis,
and an odd-item score Xi and an even-item Score Xi were computed for each stu-
dent, providing unimodal distributions of scores on two, roughly parallel
tests of n = 25 items. Summary statistics for the unimodzl scores Xi and Xi
were as follows: (a) MX = 17.40 and Mx' = 17.17, (b) Si = 5,14 and Si' = 4.47.
4s in Table 1, a single-administration estimate based on the Xi scores was com-
pared for reasonableness to a corresponding dual-administration estimate based
on both Xi and Xi' seores.~ The results are shown in Figure 1.

Since the distribution of Xi in Figure 2(*) has small variance, as might
be expected on a criterion referenced test, the norm referenced reliability

coefficient ¢, 18 seriously attenuated——a21 = (25/24) [1-(17.40) (25-17.40)/

21
(25%5.14)1 2 0. Thus by Equarion 16, ;’o‘i = 0(X,/25) + (1-0) (17.40/25) % .70
for each of the 30 students. Using the procedure.outlined in Table 1 a value
of ab was computed for C = 10,11,...,25 as indicated bylthe broken line in
Figure 2. The two-administration estimate P, (Swaminathan, et al., 1974) based
on both Xi and Xi scores was also computed for the same C values, as indicate@
by the solid line in Figure 2. The median difference between the two cuxves
is 3 percent across criteria C = 10,11,...,25.

Figure 2 illustrates that 50 18 a reasonable estimate in the sense that
it increases and decreases at points of light and heavy score density (*) in
the same vay as Py ngevar, it would be most unwise to draw conclusions about
the accuracy of ac relative to p_ on the basis of this single data set. In
this particular case, SC generally provides a conservative estimate of the pro~
portion of consistent decisions relative to Py This can be accounted for by

two factors: (a) Xi and Xi are not based on independent administrations as

.13




12 Estimating Reliability

N N
aasumed by the model for Pc, so p_ estimates tend to be larger than Pc

eatimatea; and (b) the aimple binomial model is an apprbmimation to reality.
In regard to the latter point, theory auggesta that the compound binomial
model of Equationa 12-14. would further enhance the agreement between

the curvea of Figure 2.

Generalization to R Mastery Levels
Suppoae there are R posaible maatery levela defined by k ~ 1 criteria
CI’CZ""’Ck-I' For example 2 = 3 maatery atates like below-average, average

and above-average might be defined by two criterion scores Cl, c Then the

20
probability that person 1 ia consistently claaaified is given by a general
form of Equation 4:

(1) n '
~P P(X, <C,X] <C) +P(c; <X <¢C

,C E-x' < C ) LI ]
Clcz...ckﬂl 2 1 i 2

- )
* PGy g S Xy < ChppChag SXy < Cpg) ¥ PGy < X;0Cp g XD

2 2 (19)
= [PX < CI° + [P(C) S X <CII . . .

+ [P(C,_p < X, < Ck«-1”2 + PG, < xi)12

vwhere the aecond line of Equation 19 again followa from the assumption that Xi
and Xi are independently and identically distributed. If Xi is again aaaumed
to have a simple or compound binomial distributiosn, eagh term in the bottom
1ine of Equation 19 can be estimated by sumning binomial probabilities aa in
Equation 8 or by summing compound binomial probabilitiea as in Equation 12,

For example, if the simple binomial model ig asaumed,

CR~1
< < - X X
P(C1--x1 Cz) z (Xn)p:l_i(l . pi)n- {.
Xiucl i

14




13 Estimating Reliability

The group probability of consistent classification is then obtained by
(1)

ag in Equation 5:
Clczo L] oCk_l

averaging the P
¥ oW
L W R Sy 1 (20)
€,Cpe . -C
1€2° %1 N

Fipally, Equation 9 can be written more generally to obtain the group
probability of consistent classification due to chance with criteria

Cl ,Cz, *eay Ck_l as fOllOWB:

Pchance/c c c = [P(X < Cl)]z + [P(Cz <X < 03)]2+ . .
1 2.0. k-l (21)
2 2
+ [P(C,_, X < Cp))” + [PCC,_; < X]
where, for example, P(Cl <X < (:2) is obtained as in Equation 10:
N
121})(01 <X <c)
P(c, <X <cp) = - 22)

Coefficient kappa k is then obtained as in Equation 11, substituting

and P as defined above.

P

15 -
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Table 1

Item Mastery Test With Criterion C = 4

Estimation of Pg.i] and PC Using Similated Data for Ten Persons on a Five

20

i : @ W Pp® | 1-Px>8) |Pxo)? Ju-Prxeay] ALY X
1 2 0 19 0055 .9945 0000 .9890 .9890 2
2 .4 4 .66 4478 5522 2005 3049 5054 2
3 .4 2 .43 1121 8879 L0126 7884 .8010 2
4 .5 0 19 0085 9945 0000 9890 .9890 3
5 .5 2 .43 1121 8879 0126 7884 8010 2
6 .5 2 .43 1121 8879 0126 7884 .8010 2
7 .5 1 31 0347 9653 0012 9318 9330 3
8 6 3 .54 2415 7585 0583 5753 6336 4
9 6 4 .66 .4478 5522 2005 3049 5054 5

10 .8 5 .77 6749 3251 ] .4885 1057 5612 5

7.5196

a4y Z _ =
My = 2.30, S§ = 2.61, ay y = .58
A X My

Py = Ouy k(g * (- 0y 0

€ My, = 3.00, si, = 1.40, a

21K .67
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Figure Captions
Figure 1. Outcomes Over Repeated Administrations of Parallel Tests to an
Individual
Figure 2. Comparison of One~ and Two-Administration Indices For Various

Criterion Points in a Unimodal Distribution
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